Cho a,b,c là các số dương .CMR :
T = \(\frac{a}{3a+b+c}+\frac{b}{3b+a+c}+\frac{c}{3c+b+a}\le\frac{3}{5}\)
Cho a, b, c là các số dương . CMR:
\(\frac{a\left(b+2c\right)}{\sqrt{3b^2+6c^2}}+\frac{b\left(c+2a\right)}{\sqrt{3c^2+6a^2}}+\frac{c\left(a+2b\right)}{\sqrt{3a^2+6b^2}}\le a+b+c\)
cho 3 số dương a,b,c.chung minh:\(\frac{b}{a+3b}+\frac{c}{b+3c}+\frac{a}{c+3a}\le\frac{3}{4}\)
cho a;b;c là các số thực dương thỏa mãn a+b+c=3.CMR:\(\sqrt{\frac{a}{3b^2+1}}+\sqrt{\frac{b}{3c^2+1}}+\sqrt{\frac{c}{3a^2+1}}\ge\frac{3}{2}\)
Cho 3 số dương a,b,c. CMR: \(\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\ge\frac{1}{a+2b+c}+\frac{1}{b+2c+a}+\frac{1}{c+2a+b}\)
cho a,b,c>0
cmr \(\frac{5a^3-b^3}{ab+3b^2}+\frac{5b^3-c^3}{cb+3c^2}+\frac{5c^3-a^3}{ac+3a^2}\le a+b+c\)
Cho a,b,c là 3 số thực dương thỏa mãn a + b + c = 3.
CMR: \(\sqrt{3a+\frac{1}{b}}+\sqrt{3b+\frac{1}{c}}+\sqrt{3c+\frac{1}{a}}\ge6\)
Với a,b,c là các số thực dương. CMR: \(\frac{a^2}{\sqrt{3a^2+8b^2+14ab}}+\frac{b^2}{\sqrt{3b^2+8c^2+14bc}}+\frac{c^2}{\sqrt{3c^2+8a^2+14ca}}\ge\frac{a+b+c}{5}\)
cho a,b,c là ác sốt thực dương cmr
\(\frac{ab}{a+3b+2c}\)+\(\frac{bc}{b+3c+2a}\)+\(\frac{ac}{c+3a+2b}\le\)\(\frac{a+b+c}{6}\)