Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Violympic toán 9

ML

Cho các số dương a , b, c thỏa mãn điều kiện : a + b + c =1
CMR : \(\frac{a}{1+9b^2}+\frac{b}{1+9c^2}+\frac{c}{1+9a^2}\ge\frac{1}{2}\)

NL
15 tháng 7 2020 lúc 10:33

\(VT=\frac{a}{1+9b^2}+\frac{b}{1+9c^2}+\frac{c}{1+9a^2}\)

\(VT=a-\frac{9ab^2}{1+9b^2}+b-\frac{9bc^2}{1+9c^2}+c-\frac{9ca^2}{1+9a^2}\)

\(VT\ge a+b+c-\left(\frac{9ab^2}{6b}+\frac{9bc^2}{6c}+\frac{9ca^2}{6a}\right)\)

\(VT\ge1-\frac{3}{2}\left(ab+bc+ca\right)\)

\(VT\ge1-\frac{1}{2}\left(a+b+c\right)^2=\frac{1}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

Bình luận (0)

Các câu hỏi tương tự
AJ
Xem chi tiết
NT
Xem chi tiết
NP
Xem chi tiết
H24
Xem chi tiết
NC
Xem chi tiết
MM
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
KD
Xem chi tiết