ta có:\(A=\dfrac{1}{a^2+b^2+c^2}+\dfrac{2009}{ab+bc+ca}=\dfrac{1}{a^2+b^2+c^2}+\dfrac{4}{2\left(ab+bc+ca\right)}+\dfrac{2007}{ab+bc+ca}\)
Áp dụng BĐT cauchy-schwarz:
\(\dfrac{1}{a^2+b^2+c^2}+\dfrac{4}{2\left(ab+bc+ca\right)}\ge\dfrac{\left(1+2\right)^2}{\left(a+b+c\right)^2}\ge\dfrac{9}{9}=1\)
mà \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\Leftrightarrow ab+bc+ca\le3\)
do đó \(A\ge1+\dfrac{2007}{3}=670\)
dấu = xảy ra khi và chỉ khi a=b=c=1(làm tắt)
\(\dfrac{1}{a^2+b^2+c^2}+\dfrac{2009}{ab+bc+ca}\)
\(\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab+bc+ca}+\dfrac{1}{ab+bc+ca}+\dfrac{2007}{ab+bc+ca}\ge\dfrac{9}{\left(a+b+c\right)^2}+\dfrac{2007}{\left(a+b+c\right)^2}\ge670\)