Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

H24

Cho các số dương a, b, c, d và a/1+a + b/1+b + c/1+c + d/1+d <= 1. Chứng minh rằng a*b*c*d <= 1/81

FF
19 tháng 8 2016 lúc 10:21

A = 1/(a + 1) + 1/(b + 1) + 1/(c + 1) + 1/(d + 1) ≥ 3 
→ 1/(a + 1) ≥ 1 - 1/(b + 1) + 1 - 1/(c + 1) + 1 - 1/(d + 1) 
→ 1/(a + 1) ≥ b/(b + 1) + c/(c + 1) + d/(d + 1) 
áp dụng BĐT Cauchy cho 3 số dương: 
b/(b + 1) + c/(c + 1) + d/(d + 1) ≥ 3 ³√(bcd)/[(b + 1)(c + 1)(d + 1)] 
→ 1/(a + 1) ≥ 3 ³√(bcd)/[(b + 1)(c + 1)(d + 1)] tương tự 
1/(b + 1) ≥ 3 ³√(acd)/[(a + 1)(c + 1)(d + 1)] 
1/(c + 1) ≥ 3 ³√(abd)/[(a + 1)(b + 1)(d + 1)] 
1/(d + 1) ≥ 3 ³√(abc)/[(a + 1)(b + 1)(c + 1)] 
nhân theo vế → 1/[(a + 1)(b + 1)(c + 1)(d + 1)] ≥ 81abcd/[(a + 1)(b + 1)(c + 1)(d + 1)] 
→ 1 ≥ 81abcd → abcd ≤ 1/81 

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NT
Xem chi tiết
PT
Xem chi tiết
TQ
Xem chi tiết
QH
Xem chi tiết
H24
Xem chi tiết
PP
Xem chi tiết
BT
Xem chi tiết
KL
Xem chi tiết