Dễ thấy thôi, sẽ có 4 TH là
(-) a=1; b=1
(-) a=1 ; b =0
(-) a=0 ; b=1
(-) a=0 ; b=0
( phần cm cậu tự làm nhé)
Sau đó xét từng TH => đpcm
Dễ thấy thôi, sẽ có 4 TH là
(-) a=1; b=1
(-) a=1 ; b =0
(-) a=0 ; b=1
(-) a=0 ; b=0
( phần cm cậu tự làm nhé)
Sau đó xét từng TH => đpcm
cho các số dương a và b thỏa mãn các điều kiện:
a^2000 + b^2000 = a^1998 + b^1998
chứng minh rằng a^2 + b^2 < hoặc = 2
cho a va b biet a^2000+b^2000= a^1998+ b^1998 . CMR a^2+b^2< 2
cho 3 số thỏa mãn x/1998=y/1999=z/2000.
a)CMR: (x-z)3=8(x-y)2(y-z)
b)CMR: nếu 2(x+y)=5(y+z)=3(z+x) thì x-y/4=y-z/5
Cho 3 số x,y,z thỏa mãn:
x/1998=y/1999=z/2000
CMR: (x-z)=8.(x-y)^2.(y-z)
Cho x , y , z thỏa mãn : x / 1998 = y / 1999 = z / 2000. CMR ( x - z ) ^ 2 = 8 ( x-y ) ^ 2 (y - z)
Cho f(x)=ax^2+bx+c . CMR: ko co nhung so nguyen a,b,c nao lam cho f(x)=1 khi x=1998 va f(x)=2 khi x=2000
cho a,b,c là các số thực thỏa mãn : a+b+c=1 ; a2+b2+c2 =1 và \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\). CMR: x.y+y.z+z.x = 0
CHo a,b,c,d > 0 thỏa mãn a/b=c/d.
CMR ( a+2c/b+2d)^2 = a^2+2c^2/ b^2+ 2d^2
cho ba số a,b,c thỏa mãn a/1997=b/1998=c/1999
Tính giá trị của biểu thức 16(a-b)(b-c)-4\(\left(c-a\right)^2\)