AN

cho các số a, b, c > 0, chứng minh rằng a + b + c + 1/a + 4/b + 9/c lớn hơn hoặc bằng 12

TH
30 tháng 3 2022 lúc 20:48

\(a+\dfrac{1}{a}=\dfrac{a^2+1}{a}\ge\dfrac{2a}{a}=2;b+\dfrac{4}{b}=\dfrac{b^2+4}{b}\ge\dfrac{4b}{b}=4;c+\dfrac{9}{c}=\dfrac{c^2+9}{c}\ge\dfrac{6c}{c}=6\)

\(a+b+c+\dfrac{1}{a}+\dfrac{4}{b}+\dfrac{9}{c}=\left(a+\dfrac{1}{a}\right)+\left(b+\dfrac{4}{b}\right)+\left(c+\dfrac{9}{c}\right)\ge2+4+6=12\)

 

Bình luận (0)

Các câu hỏi tương tự
DL
Xem chi tiết
NK
Xem chi tiết
NN
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
MA
Xem chi tiết
H24
Xem chi tiết
HN
Xem chi tiết
NM
Xem chi tiết