Gọi S là tập các giá trị của tham số m sao cho phương trình x + 1 3 + 3 - m = 3 3 x + m 3 có đúng hai nghiệm thực. Tính tổng tất cả các phần tử trong tập hợp S
A. 4
B. 2
C. 6
D. 5
Gọi S là tập hợp tất cả các giá trị thực của a sao cho đường thẳng y=a(x-1)-3 cắt đồ thị (C) của hàm số y = 2 x 3 - 3 x 2 - 2 tại ba điểm M,N,P(1;-3) và tiếp tuyến của (C) tại M,N vuông góc với nhau. Tổng các phần tử của S bằng
A. -1.
B. 1.
C. 2.
D. -2
Gọi S là tập hợp tất cả các giá trị của tham số m để đồ thị hàm số y = x 3 + 3 x 2 - 9 x + 2 m + 1 và trục Ox có đúng hai điểm chung phân biệt. Tính tổng T của các phần tử thuộc tập S.
A. T = 12.
B. T = 10.
C. I = 8.
D. I = 32.
Cho hàm số y = f x = - x 3 + 6 x 2 + 2 có đồ thị (C) và điểm M(m;2). Gọi S là tập hợp các giá trị thực của m để qua M kẻ được đúng hai tiếp tuyến với đồ thị (C). Tổng các phần tử của S là:
A. 12 3
B. 20 3
C. 19 3
D. 23 3
Cho hàm số y = 2 x − 2 x − 2 có đồ thị là (C). M là điểm thuộc (C) sao cho tiếp tuyến của (C) tại M cắt hai đường tiệm cận của (C) tại hai điểm A, B thỏa mãn A B = 2 5 . Gọi S là tổng các hoành độ của tất cả các điểm M thỏa mãn bài toán. Giá trị của S bằng:
A. 8
B. 5
C. 7
D. 6
Gọi S là tập hợp các số thực m sao cho với mỗi m ∈ S có đúng một số phức thỏa mãn | z - m | = 6 v à z z - 4 là số thuần ảo. Tính tổng của các phần tử của tập S.
A. 10
B. 0
C. 16
D. 8
Gọi S là tập hợp các số thực m sao cho với mỗi m ∈ S có đúng một số phức thỏa mãn z - m = 4 và z z - 6 là số thuần ảo. Tính tổng của các phần tử của tập S
A. 0
B. 12.
C. 6
D. 14
Gọi S là tập hợp các số thực m sao cho với mỗi m ∈ S có đúng một số phức thỏa mãn z - m = 4 và z z - 6 là số thuần ảo. Tính tổng của các phần tử của tập S.
A. 0
B. 12
C. 6
D. 14
Gọi S là tập hợp tất cả các giá trị thực của tham số m để đồ thị hàm số y = 2 x 3 - 3 ( m + 1 ) x 2 + 6 m x có hai điểm cực trị là A và B sao cho đường thẳng AB vuông góc với đường thẳng d : y = x + 2 Số phần tử của S là
A. 0
B. 1
C. 2
D. 3