ND

Cho C= \(\frac{3}{4}\) + \(\frac{15}{16}\)+......+\(\frac{4^{2010}-1}{4^{2010}}\)

So sánh C với 2009

PT
5 tháng 8 2015 lúc 10:30

\(C=\frac{4^1-1}{4^1}+\frac{4^2-1}{4^2}+...+\frac{4^{2009}-1}{4^{2009}}+\frac{4^{2010}-1}{4^{2010}}\)

\(C=\frac{4^1}{4^1}-\frac{1}{4^1}+\frac{4^2}{4^2}-\frac{1}{4^2}+...+\frac{4^{2009}}{4^{2009}}-\frac{1}{4^{2009}}+\frac{4^{2010}}{4^{2010}}-\frac{1}{4^{2010}}\)

\(C=\left(1+1+...+1\right)-\left(\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2009}}+\frac{1}{4^{2010}}\right)\)(tổng có 2010 số 1)

\(C=2010-\left(\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2009}}+\frac{1}{4^{2010}}\right)\)

Xét tổng \(A=\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2009}}+\frac{1}{4^{2010}}\)

=> \(4A=1+\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2009}}\)

=> \(4A-A=\left(1+\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2009}}\right)-\)\(\left(\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2009}}+\frac{1}{4^{2010}}\right)\)

=> \(3A=1-\frac{1}{4^{2010}}2010-1>2009\)

 

Bình luận (0)
EC
30 tháng 8 2016 lúc 20:49

\(C=\frac{4^1-1}{4^1}+\frac{4^2-1}{4^2}+...+\frac{4^{2009}-1}{4^{2009}}+\frac{4^{2010}-1}{4^{2010}}\)

\(C=\frac{4^1}{4^1}-\frac{1}{4^1}+\frac{4^2}{4^2}-\frac{1}{4^2}+...+\frac{4^{2009}}{4^{2009}}-\frac{1}{4^{2009}}+\frac{4^{2010}}{4^{2010}}-\frac{1}{4^{2010}}\)

\(C=\left(1+1+...+1\right)-\left(\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2009}}+\frac{1}{4^{2010}}\right)\)(có 2010 số 1)

\(C=2010-\left(\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2009}}+\frac{1}{4^{2010}}\right)\)

Xét : \(A=\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2009}}+\frac{1}{4^{2010}}\)

\(4A=1+\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2009}}\)

\(4A-A=\left(1+\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2009}}\right)-\left(\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2009}}+\frac{1}{4^{2010}}\right)\)

\(3A=1-\frac{1}{4^{2010}}< 1\)

\(A< \frac{1}{3}\)

\(C=2010-A>2010-\frac{1}{3}>2010-1>2009\)

Bình luận (0)

Các câu hỏi tương tự
PA
Xem chi tiết
TP
Xem chi tiết
BL
Xem chi tiết
HN
Xem chi tiết
LA
Xem chi tiết
NU
Xem chi tiết
NA
Xem chi tiết
LM
Xem chi tiết
PH
Xem chi tiết