Cho 3 số a,b,c khác 0 thỏa mãn: (ay - bx)/c= (cx-az)/b=(bz-cy)/a. Chứng minh : (ax+by+cz)^2=(a^2+b^2+c^2)(x^2+y^2+z^2)
CMR nếu a,b,c,x,y,z thỏa mãn điều kiện:
\(\frac{bz+cy}{x\left(-ax+by+cz\right)}=\frac{cx+az}{y\left(ax-by+cz\right)}=\frac{ay+bx}{z\left(ax+by-cz\right)}\)
thì \(\frac{x}{a\left(b^2+c^2-a^2\right)}=\frac{y}{b\left(a^2+c^2-b^2\right)}=\frac{z}{c\left(a^2+b^2-c^2\right)}\)
( Giả thiết các tỉ số đều có nghĩa )
CMR nếu a,b,c,x,y,z thỏa mãn :
\(\frac{bz+cy}{x\left(-ax+by+cz\right)}=\frac{cx+az}{y\left(ax-by+cz\right)}=\frac{ay+bx}{z\left(ax+by-cz\right)}\)
thì \(\frac{x}{a\left(b^2+c^2-a^2\right)}=\frac{y}{b\left(a^2+c^2-b^2\right)}=\frac{z}{c\left(a^2+b^2-c^2\right)}\)
( giả thiết các tỉ số đều có nghĩa )
Đặt thừa số chúng viết tổng thành tích
a) ax - by - ay + bx
b) ax + by - ay - bx
c) a2 - ( b+c) a + bc
d) ( 3a-2)(4a-3) -(2-3a)(3a+1)
e) ax + ay + az - bx - by - bz - x - y - z
1,CMR nếu a,b,c x,y,z thỏa mãn điều kiện :
\(\frac{bz+cy}{x\left(-ax+by+cz\right)}=\frac{cx+az}{y\left(ax-by+cz\right)}=\frac{ay+bx}{z\left(ax+by-cz\right)}\)
thì \(\frac{x}{a\left(b^2+c^2-a^2\right)}=\frac{y}{b\left(a^2+c^2-b^2\right)}=\frac{z}{c\left(a^2+b^2-c^2\right)}\)
( giả thiết các tỉ số đều có nghĩa )
2,CMR nếu \(\frac{a+bx}{b+cy}=\frac{b+cx}{c+ay}=\frac{c+ax}{a+by}\)
thì \(a^3+b^3+c^3-3abc=0\)
3,CMR nếu \(x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}\)
thì x=y=z hoặc x2y2z2=1
Đặt thừa số chung, viết tổng thành tích
a) ab - 2b - 3a + 6
b) ax - by - ay + bx
c) ax + by - ay - bx
d) a^2 - (b + c) a + bc
e) (3a - 2)(4a - 3) -(2 - 3a)(3a + 1)
f) ax + ay + az - bx - by - bz - x -y -z
Các bạn ơi giúp mình với! mÌnh ko hiểu gì lun! Bạn nào giải đc câu nào thì hay câu đó! cảm ơn nhìu ạ!
Cho bz-cy/a=cx-az/b=ay-bx/c.
C/m: x/a=y/b=z/c
Cho bx-ay/c=az-cx/b=cy-bz/a. CMR x/a=y/b=z/c
Cho [bz-cy]\a=[cx-az]\b=[ay-bx]\c.CMR:x\a=y\b=z\c