LS

Cho (bz - cy)/a = (cx - az)/b = (ay - bx)/c

CMR : x/a = y/b = z/c

ST
16 tháng 9 2017 lúc 21:12

\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)

\(\Rightarrow\frac{bxz-cxy}{ax}=\frac{cxy-azy}{by}=\frac{ayz-bxz}{cz}=\frac{bxz-cxy+cxy-azy+ayz-bxz}{ax+by+cz}=\frac{0}{ax+by+cz}=0\)

\(\Rightarrow\hept{\begin{cases}\frac{bz-cy}{a}=0\\\frac{cx-az}{b}=0\\\frac{ay-bx}{c}=0\end{cases}\Rightarrow\hept{\begin{cases}bz-cy=0\\cx-az=0\\ay-bx=0\end{cases}\Rightarrow}\hept{\begin{cases}bz=cy\\cx=az\\ay=bx\end{cases}\Rightarrow}\hept{\begin{cases}\frac{z}{c}=\frac{y}{b}\left(1\right)\\\frac{x}{a}=\frac{z}{c}\left(2\right)\\\frac{y}{b}=\frac{x}{a}\left(3\right)\end{cases}}}\)

Từ (1),(2),(3) suy ra \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

Bình luận (0)

Các câu hỏi tương tự
PH
Xem chi tiết
TD
Xem chi tiết
TD
Xem chi tiết
HH
Xem chi tiết
DU
Xem chi tiết
T2
Xem chi tiết
PH
Xem chi tiết
MA
Xem chi tiết
H24
Xem chi tiết