B = (x2 - 16) + |y - 3| - 2
B = x2 - 16 - 2 + |y + 3|
B = x2 - 18 + |y + 3|
Ta có :
x2 \(\ge0\)
|y + 3| \(\ge0\)
=> x2 + |y + 3| \(\ge0\)
=> x2 - 16 + |y + 3| \(\le16\)
\(\Leftrightarrow\hept{\begin{cases}x^2=0\\\left|y+3\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}}\)
Đúng 0
Bình luận (0)
Ta có: \(x^2\ge0\Rightarrow x^2-16\ge-16\)
Mà \(\left|y-3\right|\ge0\)
\(\Rightarrow\left(x^2-16\right)+\left|y-3\right|\ge-16\)
\(\Rightarrow B=\left(x^2-16\right)+\left|y-3\right|-2\ge-18\)
Dấu " = " khi \(\hept{\begin{cases}x^2-16=0\\y-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=4;x=-4\\y=3\end{cases}}\)
Vậy MIN B = -18 khi x = -4 hoặc x = 4 và y = 3
Đúng 0
Bình luận (0)
xin lỗi bạn, x = 0 nhé, mk nhìn nhầm...
Đúng 0
Bình luận (0)