BP

Cho bốn số dương a,b,c,d. Chứng minh rằng:

\(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)

DH
31 tháng 5 2021 lúc 10:05

\(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\)

\(>\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}\)

\(=\frac{a+b+c+d}{a+b+c+d}=1\).

\(\frac{a}{a+b+c}+\frac{c}{c+d+a}< \frac{a}{a+c}+\frac{c}{c+a}=\frac{a+c}{c+a}=1\)

\(\frac{b}{b+c+d}+\frac{d}{d+a+b}< \frac{b}{b+d}+\frac{d}{d+b}=\frac{b+d}{d+b}=1\)

Suy ra đpcm. 

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
ND
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết
NV
Xem chi tiết
TN
Xem chi tiết
TD
Xem chi tiết
H24
Xem chi tiết
TM
Xem chi tiết
NM
Xem chi tiết