Trong bốn số tự nhiên liên tiếp chắc phải có một thừa số nguyên tố n mà các số còn lại không chia hết cho n
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Trong bốn số tự nhiên liên tiếp chắc phải có một thừa số nguyên tố n mà các số còn lại không chia hết cho n
bài 1:cho A=2004^4+2004^3+2004^2+23 ko phải là số chính phương.cmr nha
bài 2:cmr:tổng bình phương của 4 số tự nhiên liên tiếp ko pkair là số chính phương
bài 3:cho B=n+(n+1)+(n+2)+(n+3) (n thuộc N*)
cmr:b ko phải là số chính phương
chứng minh rằng :
a) S = 1 + 3 +5 +7 + ... + 2n - 1 với n thuộc N* là số chính phương .
b) S = 2 +4 +6 + ... + 2n với n thuộc N* không phải là số chính phương
Bài 1: Tìm n có 2 chữ số, biết rằng 2n+1 và 3n+1 đều là các số chính phương
Bài 2: Tìm số chính phương n có 3 chữ số, biết rằng n chia hết cho 5 và nếu nhân n với 2 thì tổng các chữ số của nó không thay đổi
Bài 3: Tìm số tự nhiên n (n>0) sao cho tổng 1! + 2! + ... + n! là một số chính phương
Bài 4: Tìm các chữ số a và b sao cho: \(\overline{aabb}\)là số chính phương
Bài 5: CMR: Tổng bình phương của 2 số lẻ bất kì không phải là một số chính phương
Bài 6: Một số gồm 4 chữ số, khi đọc ngược lại thì không đổi và chia hết cho 5, Số đó có thể là số chính phương hay không?
Bài 7: Tìm số chính phương có 4 chữ sô chia hết cho 33
CÁC BẠN GIÚP MÌNH NHÉ! THANKS
a) Cho A= 1+3+5+7+...+ ( 2n +1) Với n thuộc N
chứng tỏ rằng A là số chính phương.
b) Cho B= 2+4+6+8+...+2n Với n thuộc N
số B có thể là số chính phương không ?
cho A=1!+2!+3!+.....+n! với n>3
CMR: A không phải là số chính phương
1) Chứng minh 20044+20043+20042+23 không phải là số chính phương.
2)Tìm n để n2+2n+12 là số chính phương.
1, D=7+72+73+...........+72016.Tìm chữ số tận cùng của D.D có phải là số chính phương không?Vì sao?
2,Tìm số chính phương có dạng abcd biết bc chia hết cho 13
3,Cho E=11111.....11 (2n chữ số 1) - 777......7 (n chữ số 7).Tìm n để E là số chính phương
4,C=1111......1121(2016 chữ số 1 và 21).C có phải là số chính phương không
bài1
tìm số tự nhiên n có 4 chữ số, biết rằng n là số chính phương và n là bội của 147
bài 2
chứng minh rằng: n^2012+1 không phải là số chính phương với n là số tự nhiên lẻ.
CMR 7n +2 không phải là số chính phương ( n-1 ko hết chia 4 n thuộc N > 1