HV

Cho biểu thức

P= \(\left(\dfrac{\sqrt{x-1}}{3+\sqrt{x-1}}+\dfrac{x+8}{\left(3-\sqrt{x-1}\right)\left(3+\sqrt{x-1}\right)}\right):\left(\dfrac{3\sqrt{x-1}+1}{x-1-3\sqrt{x-1}}-\dfrac{1}{\sqrt{x-1}}\right)\)

a) Rút gọn P .

b) Tính giá trị của biểu thức P khi x= \(\sqrt{3+2\sqrt{2}}-\left(\sqrt{5}+1\right)\sqrt{3-2\sqrt{2}}+\sqrt{5}\left|1-\sqrt{2}\right|\)

GH
3 tháng 7 2023 lúc 16:18

a

ĐK: \(1< x\ne10\)

Đặt \(t=\sqrt{x-1}\Rightarrow x=t^2+1;0< t\ne3\)

Khi đó:

\(P=\left(\dfrac{t}{3+t}+\dfrac{t^2+9}{\left(3-t\right)\left(3+t\right)}\right):\left(\dfrac{3t+1}{t^2-3t}-\dfrac{1}{t}\right)\\ =\left(\dfrac{t\left(3-t\right)+t^2+9}{\left(3-t\right)\left(3+t\right)}\right):\left(\dfrac{3t+1}{t\left(t-3\right)}-\dfrac{1}{t}\right)\\ =\dfrac{3t+9}{\left(3-t\right)\left(3+t\right)}:\dfrac{3t+1-t+3}{t\left(t-3\right)}=\dfrac{3\left(t+3\right)}{\left(3-t\right)\left(3+t\right)}:\dfrac{2t+4}{t\left(t-3\right)}\\ =\dfrac{3\left(t+3\right)}{\left(3-t\right)\left(3+t\right)}.\dfrac{t\left(t-3\right)}{2t+4}=\dfrac{-3t}{2t+4}=\dfrac{-3\sqrt{x-1}}{2\sqrt{x-1}+4}\)

b

Ta có:

\(x=\sqrt{\left(\sqrt{2}+1\right)^2}-\left(\sqrt{5}+1\right)\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{5}\left|1-\sqrt{2}\right|\)

\(=\sqrt{2}+1-\left(\sqrt{5}+1\right)\left|1-\sqrt{2}\right|+\sqrt{5}\left|1-\sqrt{2}\right|\)

\(=\sqrt{2}+1-\sqrt{5}\left|1-\sqrt{2}\right|-\left|1-\sqrt{2}\right|+\sqrt{5}\left|1-\sqrt{2}\right|\\ =\sqrt{2}+1-\left(\sqrt{2}-1\right)=2\)

Vậy \(P=\dfrac{-3\sqrt{2-1}}{2\sqrt{2-1}+4}=-\dfrac{1}{2}\)

Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
HM
Xem chi tiết
TN
Xem chi tiết
LL
Xem chi tiết
AL
Xem chi tiết
HL
Xem chi tiết
LM
Xem chi tiết
HM
Xem chi tiết
TT
Xem chi tiết