TA

Cho biểu thức P=a4+b4-ab,với a,b là cá số thực thỏa mãn a2+b2+ab=3.Tìm GTLN và GTNN của P

H24
4 tháng 6 2019 lúc 9:47

#)Giải :

Ta có : \(P=a^4+b^4+2-2-ab\)

Áp dụng BĐT cô si, ta có : 

\(a^4+1\ge2a^2\)dấu = xảy ra khi a = 1

\(b^4+1\ge2b^2\)dấu = xảy ra khi b = 1

Khi đó \(P\ge2a^2+2b^2-2-ab\)

           \(P\ge2\left(a^2+b^2+ab\right)-2-3ab\)

           \(P\ge4-3ab\)( thay \(a^2+b^2+ab=3\)vào ) (1)

Mặt khác \(a^2+b^2\ge2ab\)

Khi đó \(a^2+b^2+ab=3\ge2ab+ab=3ab\)

\(\Rightarrow ab\le1\)(2)

Từ (1) và (2)

Ta có : \(P\ge4-3ab\ge4-3=1\)

Vậy P đạt GTNN là 1 khi a = b = 1

                #~Will~be~Pens~#

Bình luận (0)

Các câu hỏi tương tự
TD
Xem chi tiết
TH
Xem chi tiết
HL
Xem chi tiết
NA
Xem chi tiết
NV
Xem chi tiết
PB
Xem chi tiết
H24
Xem chi tiết
HV
Xem chi tiết
LS
Xem chi tiết