BM

Cho biểu thức P =\(\dfrac{x}{x+2}\) +\(\dfrac{2}{x-2}\)+\(\dfrac{2x+4}{4-x^2}\)với x≠2 , x≠ -2

Tìm giá trị của P tại |x+1|=3

 

NN
11 tháng 1 2023 lúc 21:18

\(\dfrac{x}{x+2}+\dfrac{2}{x-2}+\dfrac{2x+4}{4-x^2}\\ =\dfrac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\dfrac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{2x+4}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{x^2-2x+2x+4-2x-4}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{x^2-2x}{\left(x-2\right)\left(x+2\right)}\\ =\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\\ =\dfrac{x}{x+2}\)

 

\(\left|x+1\right|=3\\ \left[{}\begin{matrix}x+1=3\\x+1=-3\end{matrix}\right.=>\left[{}\begin{matrix}x=2\left(loai\right)\\x=-4\left(tm\right)\end{matrix}\right.\)

với x=-4 thì

\(\dfrac{-4}{-4+2}=\dfrac{-4}{-2}=2\)

Bình luận (0)
TC
11 tháng 1 2023 lúc 21:21

\(=>P=\dfrac{x}{x+2}+\dfrac{2}{x-2}+\dfrac{-2x-4}{x^2-4}\)`(x ne +-2)`

\(P=\dfrac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\dfrac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{-2x-4}{\left(x+2\right)\left(x-2\right)}\)

\(P=\dfrac{x^2-2x+2x+4-2x-4}{\left(x+2\right)\left(x-2\right)}=\dfrac{x^2-2x}{\left(x-2\right)\left(x+2\right)}=\dfrac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}\)

\(P=\dfrac{x}{x+2}\)

`|x+1| =3`

`=>[(x+1=3),(x+1=-3):}`

`=> [(x=3-1=2(ktm) ),(x=-3-1=-4(t/m)):}`

Thay `x=-4` vào `P` ta đc

`P= (-4)/(-4+2) = 2`

Bình luận (0)

Các câu hỏi tương tự
TL
Xem chi tiết
TL
Xem chi tiết
TL
Xem chi tiết
TL
Xem chi tiết
TL
Xem chi tiết
MT
Xem chi tiết
VN
Xem chi tiết
HP
Xem chi tiết
NC
Xem chi tiết