Chương I - Căn bậc hai. Căn bậc ba

DQ

Cho biểu thức: \(B=\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}+\frac{x\sqrt{x}-y\sqrt{y}}{y-x}\right):\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)

a) Rút gọn B

b) Chứng minh: \(B\ge0\)

c) So sánh B với \(\sqrt{B}\)

AH
1 tháng 12 2019 lúc 22:53

Lời giải:

ĐK: $x\neq y; x,y\geq 0$

a)

\(B=\left[\frac{(x-y)(\sqrt{x}+\sqrt{y})}{(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})}-\frac{x\sqrt{x}-y\sqrt{y}}{(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})}\right]:\frac{x-\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\)

\(=\frac{x\sqrt{x}+x\sqrt{y}-y\sqrt{x}-y\sqrt{y}-x\sqrt{x}+y\sqrt{y}}{(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})}.\frac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)

\(=\frac{x\sqrt{y}-y\sqrt{x}}{\sqrt{x}-\sqrt{y}}.\frac{1}{x-\sqrt{xy}+y}=\frac{\sqrt{xy}(\sqrt{x}-\sqrt{y})}{\sqrt{x}-\sqrt{y}}.\frac{1}{x-\sqrt{xy}+y}=\frac{\sqrt{xy}}{x-\sqrt{xy}+y}\)

b) Ta thấy:

\(\sqrt{xy}\geq 0, \forall x,y\geq 0\)

\(x-\sqrt{xy}+y=(\sqrt{x}-\frac{\sqrt{y}}{2})^2+\frac{3}{4}y>0, \forall x,y\geq 0; x\neq y\)

\(\Rightarrow B=\frac{\sqrt{xy}}{x-\sqrt{xy}+y}\geq 0\) (đpcm)

c)

Áp dụng BĐT AM-GM: \(x+y\geq 2\sqrt{xy}\Rightarrow x-\sqrt{xy}+y\geq \sqrt{xy}\)

\(\Rightarrow B=\frac{\sqrt{xy}}{x-\sqrt{xy}+y}\leq 1\)

Dấu "=" xảy ra khi $x=y$. Mà $x\neq y$ nên $B< 1\Rightarrow \sqrt{B}< 1$

Do đó: \(B=\sqrt{B}.\sqrt{B}< \sqrt{B}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
HC
Xem chi tiết
PD
Xem chi tiết
TV
Xem chi tiết
LG
Xem chi tiết
NA
Xem chi tiết
NQ
Xem chi tiết
PH
Xem chi tiết
HC
Xem chi tiết
DT
Xem chi tiết