Chương I - Căn bậc hai. Căn bậc ba

HC

Cho biểu thức: \(P=\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right).\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right]:\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)

Rút gọn P. Cho \(x.y=16\). Xác định x, y để P có giá trị nhỏ nhất

NL
18 tháng 6 2019 lúc 4:38

ĐKXĐ:

\(P=\left[\frac{\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}.\frac{2}{\left(\sqrt{x}+\sqrt{y}\right)}+\frac{x+y}{xy}\right]:\left[\frac{\sqrt{x}\left(x+y\right)+\sqrt{y}\left(x+y\right)}{\sqrt{xy}\left(x+y\right)}\right]\)

\(=\left(\frac{2\sqrt{xy}+x+y}{xy}\right):\left[\frac{\left(x+y\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}\left(x+y\right)}\right]=\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{xy}.\frac{\sqrt{xy}}{\left(\sqrt{x}+\sqrt{y}\right)}=\frac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\)

\(xy=16\Rightarrow\left\{{}\begin{matrix}\sqrt{xy}=4\\y=\frac{16}{x}\end{matrix}\right.\)

\(\Rightarrow P=\frac{\sqrt{x}+\frac{4}{\sqrt{x}}}{4}\ge\frac{1}{4}\left(2\sqrt{\sqrt{x}.\frac{4}{\sqrt{x}}}\right)=1\)

\(\Rightarrow P_{min}=1\) khi \(x=y=4\)

Bình luận (0)

Các câu hỏi tương tự
TV
Xem chi tiết
HC
Xem chi tiết
DT
Xem chi tiết
HC
Xem chi tiết
HC
Xem chi tiết
NN
Xem chi tiết
DQ
Xem chi tiết
NM
Xem chi tiết
NN
Xem chi tiết