Cho biểu thức B = 75 ( 1 + 4 +42 + .....+ 42017 + 42018 ) +25
CMR B chia hết cho 400
CMR biểu thức A=75.(4^2017+4^2016+..+4^2+5)+25 chia hết cho 4^2018
Cho biểu thức A=75.(4^2004+4^2003+.....+4^+4+1)+25. Chứng minh rằng Achia hết cho 100
1) Cho 2 số tự nhiên a và b, biết 2 chia cho 6 dư 2 và b chia cho 6 dư 3. . Chứng minh rằng ab chia hết cho 6.
2) Cho a và b là 2 sớ tự nhiên, biết a chia cho 5 dư 2 và b chia cho 5 dư 3 . Chứng minh rằng ab chia cho 5 dư 1.
3) Cho 2 số tự nhiên a và b, biết a chia cho 6 dư 3 và ab chia hết cho 6. . Hỏi b chia cho 6 có số dư là bao nhiêu? Chứng minh.
4) Chứng minh rằng: n (2n - 3) - 2n (n + 1) luôn chia hết cho 5 với n là số tự nhiên.
5) Chứng minh rằng với mọi số nguyên n biểu thức (n - 1) (n + 4) - (n - 4) (n + 1) luôn chia hết cho 6.
Chứng minh rằng
A= 75.( 41999+41998+...+42+4+1)+25 là số chia hết cho 100
b) Cho biểu thức A = 1 + 3^2+3^4+...+3^100
Chứng minh rằng 8A – 26 chia hết cho 54.
Chứng tỏ rằng A= 75( 4^2023+ 4^2022+4^2021+...+ 4^2+ 4+ 1)+ 25 chia hết cho 100
Chứng tỏ rằng \(M=75.\left(4^{2017}+4^{2016}+...+4^2+4+1\right)+25\) chia hết cho 102
Chứng minh A=75(4^2015+4^2014+.....+4^2+4+1)+25 chia hết cho 100