là 12 (mình đoán thế)
Xét \(\sqrt{x^2-6x+10}=\sqrt{\left(x-3\right)^2+1}\ge1\)
=> B \(\le11\)
Dấu "=" <=> x = 3
là 12 (mình đoán thế)
Xét \(\sqrt{x^2-6x+10}=\sqrt{\left(x-3\right)^2+1}\ge1\)
=> B \(\le11\)
Dấu "=" <=> x = 3
\(A=\dfrac{\left(x+2\right)^2}{x};B=x\left(x+2\right)+\dfrac{x^2+6x+4}{x}\) với x ≠ 0
a. Tính giá trị của biểu thức A biết x > 0 ; \(x^2=3-2\sqrt{2}\)
b. Rút gọn biểu thức \(M=A-B\)
c.Tìm x để biểu thức M đạt giá trị lớn nhất .Tìm giá trị lớn nhất đó ?
Cho biểu thức \(A=\left(\frac{2x+\sqrt{x}-1}{1-x}+\frac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right):\frac{2\sqrt{x}-1}{\sqrt{x}-x}\)
a. Rút gọn biểu thức A
b, Tính giá trị x để giá trị của biểu thức A =2/3
c. Biểu thức A có giá trị lớn nhất không ? Vì sao ?
cho biểu thức A= \(\sqrt{x^2-6x+19}-\sqrt{x^2-6x+10}=3\)
hãy tính giá trị của biểu thức
A=\(\sqrt{x^2-6x+19}+\sqrt{x^2-6x+10}\)
VẬN DỤNG BÀI BIẾN ĐỔI ĐƠN GIẢN BIỂU THỨC CHỨA CĂN BẬC HAI
Cho biểu thức Q= \(\sqrt{\left(1-3x\right)\left(x+\dfrac{1}{2}\right)}\)
a, Với giá trị nào của x thì biểu thức có nghĩa?
b, Tìm giá trị lớn nhất của Q
Cho biểu thức : A= \(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\) , với x ≥ 0 và x ≠ 9
a) Rút gọn biểu thức A.
b) Tìm gi trị của x để A = \(\dfrac{1}{3}\).
c) Tìm giá trị lớn nhất của biểu thức A.
Tìm giá trị nhỏ nhất của biểu thức,
A=\(\sqrt{4x^2+4x+2}\)
B=\(\sqrt{2x^2-4x+5+1}\)
Tìm giá trị lớn nhất của biểu thức
M=\(-5+\sqrt{1+9x^2+6x}\)
cho 2 biểu thức
A=\(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}-\frac{3\sqrt{x}}{x+\sqrt{x}-2}\)
B=\(\frac{\sqrt{x}+3}{\sqrt{x}+1}\)
a)Rút gọn biểu thức A
b)Tìm giá trị của x để biểu thức S=A.B có giá trị lớn nhất
Cho biểu thức : \(A=3\sqrt{x}+\sqrt{10-x}\)
a, Tìm giá trị nhỏ nhất của A
b, Tìm giá trị lớn nhất của A
Cho biểu thức :
\(A=\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}\)
a) Rút gọn biểu thức A
b) Tìm giá trị của x để A=1