Chương I - Căn bậc hai. Căn bậc ba

H24

Cho các biểu thức:

A = \(\dfrac{6}{x-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\) và B = \(\dfrac{3}{\sqrt{x}-1}\) với \(x\ge0;x\ne1;x\ne9\)

Đặt P = A - B. Biểu thức P sau khi tính được là \(\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\). Tìm số tự nhiên \(x\) để biểu thức \(\dfrac{1}{P}\) đạt giá trị lớn nhất

PA
15 tháng 6 2023 lúc 8:42

`1/P=(sqrtx+1)/(sqrtx-3)=(sqrtx-3+4)/(sqrtx-3)=1+4/(sqrtx-3)(x>=0,x\ne9)`

Để `1/P` max thì `4/(sqrtx-3)` max

Nhận thấy nếu `x<9` thì `sqrtx-3<0` hay `4/(sqrtx-3)<0`

Nếu `x>9` thì `4/(sqrtx-3)>0`

Do đó ta xét `x>9` hay `x>=10`

`=>sqrtx-3>=sqrt10-3`

`=>4/(sqrtx-3)<=4/(sqrt10-3)`

Hay `(1/P)_(max)=1+4/(sqrt10-3)<=>x=10`

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
LG
Xem chi tiết
LG
Xem chi tiết
PL
Xem chi tiết
H24
Xem chi tiết