a) Với giá trị nào của x biểu thức sau vô nghĩa? Tìm TXĐ của biểu thức:
\(\dfrac{5x}{x+2}\) - \(\dfrac{3}{x-1}\) + \(\dfrac{x^2+1}{\left(x-1\right)\left(x+2\right)}\)
b) Giải phương trình:
\(\dfrac{5x-2}{12}\) - \(\dfrac{2x^2+1}{8}\) = \(\dfrac{x-3}{6}\) + \(\dfrac{1-x^2}{4}\)
Giải phương trình:
\(\dfrac{x+1}{2012}+\dfrac{x+2}{2011}+\dfrac{x+3}{2010}=\dfrac{x-1}{2014}+\dfrac{x-2}{2015}+\dfrac{x-3}{2016}\)
Cho biểu thức A= \(\dfrac{x-1}{2}\) và B = \(\dfrac{1}{x}\)- \(\dfrac{x}{2x+1}\)+\(\dfrac{2x^{2^{ }}-3x-1}{x\left(2x+1\right)}\)với x≠0; x≠ \(\dfrac{-1}{2}\); x ≠ 1
1) Tính giá trị của biểu thức A tại x = 3
2) Rút gọn biểu thức B
3) Đặt C= A:B. Chứng minh C ≥ -1
*note* : Trình bày rõ ràng từng biết hộ mik nhé ^^
Câu 1: Cho 0<x<3. tìm GTNN của biểu thức A=\(\dfrac{81x}{3-x}\)+\(\dfrac{3}{x}\)
Câu 2: Tìm GTLN của biểu thức A= \(\dfrac{1}{3x-2\sqrt{6x}+5}\)
Câu 3: tìm GTNN của biểu thức A, biết A= \(2014\sqrt{x}+2015\sqrt{1-x}\)
Bài 1: Thực hiện phép tính:
a, \(\left(\dfrac{x}{x+1}+\dfrac{x-1}{x}\right):\left(\dfrac{x}{x+1}-\dfrac{x-1}{x}\right)\)
b, \(\left(1+\dfrac{x}{y}+\dfrac{x^2}{y^2}\right).\left(1-\dfrac{x}{y}\right).\dfrac{y^2}{x^3-y^3}\)
Bài 2: Với giá trị nào của x thì giá trị của mỗi biểu thức sau có giá trị bằng 0
a, \(\dfrac{5}{x-2}-\dfrac{1}{x+2}+\dfrac{4}{x^2}\)
b, \(\dfrac{2}{x^2-x+1}+x+1\)
Bài 3: Cho biểu thức: A = \(\left(\dfrac{4}{x-4}-\dfrac{4}{x+4}\right).\dfrac{x^2+8x+16}{32}\)
a, Tìm điều kiện của x để giá trị của biểu thức M được xác định
b, Tìm giá trị của x để giá trị của biểu thức M = \(\dfrac{1}{3}\)
c, Tìm giá trị của x để giá trị của biểu thức M = 3
rút gọn các biểu thức sau
\(B=\dfrac{3\text{x}^2+6\text{x}+12}{x^3-8\dfrac{ }{ }}\)
C=\(\left(\dfrac{x+1}{2\text{x}-2}+\dfrac{3}{x^2-1}-\dfrac{x+3}{2\text{x}+2}\right).\dfrac{4\text{x}^2-4}{5}\)
E=\(\dfrac{x^2-10\text{x}+25}{x^2-5\text{x}}\)
Rút gọn biểu thức \(A=\dfrac{x^2+x}{x^2-2x+1}:\left(\dfrac{x+1}{x}-\dfrac{1}{1-x}+\dfrac{2-x^2}{x^2-x}\right)\)
Cho biểu thức \(A=\dfrac{x^2+x}{x^2-2x+1}:\left(\dfrac{x+1}{x}-\dfrac{1}{1-x}+\dfrac{2-x^2}{x^2-x}\right)\)
a) Rút gọn \(A\)
b) Tính \(A\) biết \(\left|x-3\right|=2\)
c) Tìm \(x\) để \(A=\dfrac{1}{2}\)
d) Tìm \(x\) để \(A>1\)
e) Tìm \(x\) nguyên để \(A\) có giá trị nguyên
f) Với \(x>1\). Tìm giá trị nhỏ nhất của \(A\).
rút gọn biểu thức sau A=\(\left(\dfrac{x^2-2x}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x^3}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)