Ôn tập cuối năm phần số học

TP

Cho biểu thức \(A=\dfrac{x^2+x}{x^2-2x+1}:\left(\dfrac{x+1}{x}-\dfrac{1}{1-x}+\dfrac{2-x^2}{x^2-x}\right)\)

a) Rút gọn \(A\)

b) Tính \(A\) biết \(\left|x-3\right|=2\)

c) Tìm \(x\) để \(A=\dfrac{1}{2}\)

d) Tìm \(x\) để \(A>1\)

e) Tìm \(x\) nguyên để \(A\) có giá trị nguyên

f) Với \(x>1\). Tìm giá trị nhỏ nhất của \(A\).

NT
19 tháng 5 2022 lúc 10:44

a: \(E=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{x+1}{x}+\dfrac{1}{x-1}+\dfrac{2-x^2}{x\left(x-1\right)}\right)\)

\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\dfrac{x^2-1+x+2-x^2}{x\left(x-1\right)}\)

\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\dfrac{x\left(x-1\right)}{x+1}=\dfrac{x^2}{x-1}\)

b: |x-3|=2

=>x-3=2 hoặc x-3=-2

=>x=5(nhận) hoặc x=1(loại)

Khi x=5 thì \(E=\dfrac{5^2}{5-1}=\dfrac{25}{4}\)

c: Để E=1/2 thì \(\dfrac{x^2}{x-1}=\dfrac{1}{2}\)

\(\Leftrightarrow2x^2-x+1=0\)

hay \(x\in\varnothing\)

 

Bình luận (0)
TH
19 tháng 5 2022 lúc 10:51

f) \(A=\dfrac{x^2}{x-1}=\dfrac{x^2-x+x-1+1}{x-1}=\dfrac{x\left(x-1\right)+x-1+1}{x-1}=x+1+\dfrac{1}{x-1}=x-1+\dfrac{1}{x-1}+2\ge2\sqrt{\left(x-1\right).\dfrac{1}{x-1}}+2=4\)\(A=4\Leftrightarrow x=2\)

-Vậy \(A_{min}=4\)

Bình luận (0)

Các câu hỏi tương tự
2S
Xem chi tiết
2S
Xem chi tiết
SK
Xem chi tiết
SN
Xem chi tiết
DT
Xem chi tiết
DT
Xem chi tiết
TM
Xem chi tiết
MN
Xem chi tiết
QL
Xem chi tiết