\(...\Rightarrow A=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{2021}+3^{2022}+3^{2023}+3^{2024}\right)\)
\(\Rightarrow A=3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+...+3^{2021}\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=3.40+3^5.40+...+3^{2021}.40\)
\(\Rightarrow A=40\left(3+3^5+...+3^{2021}\right)⋮40\)
\(\Rightarrow A\) là bội của \(40\left(đpcm\right)\)