TH

 cho biểu thức A=1/2+1/2^2 +1/2^3 +1/2^4+........+1/2^100

chứng tỏ A<1

 

DH
1 tháng 5 2018 lúc 11:25

A= \(\frac{1}{2}\)\(\frac{1}{2^2}\)\(\frac{1}{2^3}\)+...+ \(\frac{1}{2^{99}}\)\(\frac{1}{2^{100}}\).

2A= 1+ \(\frac{1}{2}\)\(\frac{1}{2^2}\)+...+ \(\frac{1}{2^{100}}\)\(\frac{1}{2^{101}}\).

2A- A=( 1+ \(\frac{1}{2}\)\(\frac{1}{2^2}\)+...+ \(\frac{1}{2^{100}}\)\(\frac{1}{2^{101}}\))-(  \(\frac{1}{2}\)\(\frac{1}{2^2}\)\(\frac{1}{2^3}\)+...+ \(\frac{1}{2^{99}}\)\(\frac{1}{2^{100}}\)).

A= 1- \(\frac{1}{2^{100}}\)< 1.

=> A< 1.

Vậy A< 1.

Bình luận (0)
WH
1 tháng 5 2018 lúc 11:56

Ta có

\(2A=2\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}\right)\)

\(\Leftrightarrow2A=\frac{2}{2}+\frac{2}{2^2}+\frac{2}{2^3}+\frac{2}{2^4}+...+\frac{2}{2^{100}}\)

\(\Leftrightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)

\(\Leftrightarrow2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)

\(\Leftrightarrow A=1-\frac{1}{2^{100}}\)

\(\Rightarrow A< 1\)

Vậy A<1 (đpcm)

Bình luận (0)

Các câu hỏi tương tự
Xem chi tiết
Xem chi tiết
DD
Xem chi tiết
H24
Xem chi tiết
NV
Xem chi tiết
MP
Xem chi tiết
NH
Xem chi tiết
VL
Xem chi tiết
H24
Xem chi tiết