\(A=1+2^1+2^2+2^3+...+2^{2021}\\2A=2+2^2+2^3+2^4+...+2^{2022}\\2A-A=(2+2^2+2^3+2^4+...+2^{2022})-(1+2^1+2^2+2^3+...+2^{2021})\\A=2^{2022}-1\\\Rightarrow A+1=2^{2022}\)
Mặt khác: \(2^x=A+1\)
\(\Rightarrow 2^x=2^{2022}\\\Rightarrow x=2022(tm)\)
Vậy x = 2022.