HA

Cho biểu thức   2 1 1 1 . 1 1 1 A x x x             a) Tìm điều kiện của x để biểu thức A xác định. b) Rút gọn biểu thức A c) Tính giá trị của A tại x = 3

TM
20 tháng 1 2022 lúc 9:37

a. ĐKXĐ: \(x\ne\pm1\)

b. \(A=\left(x^2-1\right)\left(\dfrac{1}{x-1}-\dfrac{1}{x+1}-1\right)\)

\(=\left(x-1\right)\left(x+1\right)\left[\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}-\dfrac{x-1}{\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\right]\)

\(=\left(x-1\right)\left(x+1\right)\left[\dfrac{x+1-x+1-\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\right]\)

\(=\left(x-1\right)\left(x+1\right)\left[\dfrac{-x^2+3}{\left(x-1\right)\left(x+1\right)}\right]\)

\(=\dfrac{\left(x-1\right)\left(x+1\right)\left(-x^2+3\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=-x^2+3\)

c. Thay x = 3 vào A ta được:

\(-\left(3\right)^2+3=-6\)

Vậy: Giá trị của A tại x = 3 là -6

 

Bình luận (0)
TT
20 tháng 1 2022 lúc 9:34

a) ĐKXĐ: \(x\ne1;x\ne-1.\)

b) \(A=\left(x^2-1\right).\left(\dfrac{1}{x-1}-\dfrac{1}{x+1}-1\right).\)

\(=\left(x^2-1\right).\dfrac{x+1-x+1-x^2+1}{x^2-1}=-x^2+3.\)

c) Thay x = 3 (TMĐK) vào A: \(-3^2+3=-6.\)

Bình luận (0)