F có 0 phần tử vì n=0,5 không thuộc N
G có vô số phần tử vì G là tập hợp của mọi số chẵn
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
F có 0 phần tử vì n=0,5 không thuộc N
G có vô số phần tử vì G là tập hợp của mọi số chẵn
a) 2n + 3 và 2n + 5 \(\left(n\inℕ\right)\)
b) 2n + 3 và 2n +4 \(\left(n\inℕ\right)\)
So sánh:
a) \(A=\frac{n}{n+1};B=\frac{n+2}{n+3}\left(n\inℕ\right)\)
b) \(A=\frac{n}{n+3};B=\frac{n-1}{n+4}\left(n\inℕ^∗\right)\)
c) \(A=\frac{n}{2n+1};B=\frac{3n+1}{6n+3}\left(n\inℕ\right)\)
Giúp mình nhé gấp lắm ai trả lời đầu tiên mình sẽ tick
Bài 1 : Cho \(A=\frac{n\left(n+1\right)}{2}\)và \(B=2n+1\left(n\inℕ^∗\right)\). TÌM ƯCLN ( A , B ) ?
\(Cho\)\(A=\frac{2n+5}{n-1}\)\(\left(n\ne1,n\inℕ^∗\right)\)
Tìm n để A là Số Nguyên Tố.
Cho \(a\) là một số gồm \(2n\) chữ số \(1\), \(b\) là một số gồm \(n+1\) chữ số \(1\), \(c\) là một số gồm \(n\) chữ số \(1\) \(\left(n\inℕ^∗\right)\). Chứng minh rằng: \(a+b+6c+8\) là một số chính phương.
Chứng minh rằng:
a)\(\frac{1\cdot3\cdot5\cdot\cdot\cdot39}{21\cdot22\cdot23\cdot\cdot\cdot40}=\frac{1}{2^{20}}\)
b)\(\frac{1\cdot3\cdot5\cdot\cdot\cdot\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right)\cdot\cdot\cdot2n}=\frac{1}{2^n}\)Với \(n\inℕ^∗\)
Rut gon phan so sau :
a)\(\frac{9^{14\times}25^5\times8^7}{18^{12}\times625^3\times24^3}\)
b)\(\frac{1\times3\times5\times...\times39}{21\times22\times23\times...\times40}\)
c)\(\frac{1\times3\times5\times...\times\left(2n-1\right)}{\left(n+1\right)\times\left(n+2\right)\times\left(n+3\right)\times...\times2n}\)
CHO TẬP HỢP \(A=\left\{2n+1:n\in N,n<10\right\}\)
A)HÃY LIỆT KÊ PHẦN TỬ CỦA TẬP HỢP A
B)TÍNH SỐ PHẦN TỬ CỦA TẬP HỢP A
C)TÍNH SỐ TẬP CON CỦA TẬP HỢP A
Tính giá trị của biểu thức sau một cách hợp lý
a) \(125.\left(-61\right).\left(-2\right)^3.\left(-1\right)^{2n}\left(n\inℕ^∗\right)\) c) \(-48.72+36.\left(-304\right)\)
b) \(136.\left(-47\right)+36.\left(-304\right)\)
d)\(-29\left(19-13\right)+19\left(29-13\right)\)
Các bạn jup mik nhanh nha, mik đang gấp. Thanks các bn nhiều, nhớ giải chi tiết ra nha