\(2.\left(a^2+b^2\right)=\left(a-b\right)^2\)
\(\Rightarrow2a^2+2b^2=a^2-2ab+b^2\)
\(\Rightarrow a^2+b^2=-2ab\)
\(\Rightarrow a^2+2ab+b^2=0\)
\(\Rightarrow\left(a+b\right)^2=0\)
\(\Rightarrow a=-b\)
Vậy a và b là 2 số đối nhau
\(2\left(a^2+b^2\right)=\left(a-b\right)^2\)
\(\Leftrightarrow2a^2+2b^2=a^2-2ab+b^2\)
\(\Leftrightarrow a^2+2ab+b^2=0\)
\(\Leftrightarrow\left(a+b\right)^2=0\)
\(\Leftrightarrow a+b=0\)
\(\Leftrightarrow a=-b\)
Vậy a và b là hai số đối nhau (đpcm)
2( a2 + b2 ) = ( a - b )2
<=> 2a2 + 2b2 = a2 - 2ab + b2
<=> 2a2 + 2b2 - a2 + 2ab - b2 = 0
<=> a2 + 2ab + b2 = 0
<=> ( a + b )2 = 0
<=> a + b = 0
<=> a = -b
=> đpcm