TT

Cho \(B=\frac{2018x+2019\sqrt{1-x^2}+2020}{\sqrt{1-x^2}}\). Tìm GTNN của B

NC
23 tháng 10 2019 lúc 8:51

TXĐ: \(D=\left(-1;1\right)\)

\(B=\frac{2018x+2019\sqrt{1-x^2}+2020}{\sqrt{1-x^2}}\)

\(=\frac{2018x+2020}{\sqrt{1-x^2}}+2019\)

Đặt  \(A=\frac{2018x+2020}{\sqrt{1-x^2}}>0\)vì \(-1< x< 1\)

=> \(\sqrt{1-x^2}.A=2018x+2020\)

=> \(\left(1-x^2\right)A^2=2018^2x^2+2.2018.2020x+2020^2\)

<=> \(\left(2018^2+A^2\right)x^2+2.2018.2020x+2020^2-A^2=0\)

pt trên có nghiệm <=> \(\Delta\ge0\)<=> \(\left(2018.2020\right)^2-\left(2018^2+A^2\right).\left(2020^2-A^2\right)\ge0\)

<=> \(A^4-\left(2020^2-2018^2\right)A^2\ge0\)

<=> \(A^2-8076\ge0\)

<=> \(A\ge\sqrt{8076}\)

"=" xảy ra <=> \(x=-\frac{1009}{1010}\left(tm\right)\)

Vậy GTNN của B = \(\sqrt{8076}+2019\) đạt tại  \(x=-\frac{1009}{1010}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NH
Xem chi tiết
CT
Xem chi tiết
SG
Xem chi tiết
TN
Xem chi tiết
NN
Xem chi tiết
HL
Xem chi tiết
VA
Xem chi tiết
SP
Xem chi tiết
NT
Xem chi tiết