DP

Cho bảy số tự nhiên bất kì, Chứng minh rằng ta luôn chọn được 4 số có tổng chia hết cho 4

TD
2 tháng 6 2017 lúc 7:22

Gọi 7 số đó lần lượt là a1 , a2 , ... , a7 . 

Ta chọn được hai số có tổng chia hết cho 2, chẳng hạn a1 + a2 = 2k1 . Còn lại 5 số, lại chọn được hai số có tổng chia hết cho 2, chẳng

hạn a3 + a4 = 2k2

Còn lại 3 số, lại chọn được hai số có tổng chia hết cho 2, chẳng hạn a5 + a6 = 2k3

Xét ba số k1 , k2 , k3 ta chọn được hai số có tổng chia hết cho 2, chẳng hạn k1 + k2 = 2q

Như vậy : 2k1 + 2k2 = 4q hay a1 + a2 + a3 + a4 = 4q \(⋮\)4

Bình luận (0)
EC
2 tháng 6 2017 lúc 7:44

Gói 7 thì lần lượt sẽ là :"

a, a2 ... => a7 .

Chọn đc 2 số có tổng chia hết cho 2 là : ( ví dụ )

a1 + a2 = 2k1

Vậy còn lại 5 số ! tiếp tục chọn tổng số chia hết cho 2

a3 + a4 = 2k2

Còn lại 3 số ! : a5 + a6 = 2k3

3 số : ta sẽ chọn số chia hết cho 2 :

Như vậy ta có thể làm :

k1 + k2 = 2q

2k1 + 2k2 = 4q

a1 + a2 + a3 + a4 = 4q : 4

Đáp số : .....

Bình luận (0)
TV
5 tháng 11 2017 lúc 10:34

Ta có :

n2 + n + 1 = n . ( n + 1 ) + 1

Vì n . ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên n . (  n + 1 ) + 1 là một số lẻ nên không chia hết cho 4

Vì n . ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9. Do đó n . ( n + 1 ) + 1 không có tận cùng là 0

hoặc 5 . Vì vậy, n2 + n + 1 không chia hết cho 5

P/s đùng để ý đến câu trả lời của mình

Bình luận (0)

Các câu hỏi tương tự
LV
Xem chi tiết
ND
Xem chi tiết
DM
Xem chi tiết
NC
Xem chi tiết
TT
Xem chi tiết
PB
Xem chi tiết
NN
Xem chi tiết
MK
Xem chi tiết
PT
Xem chi tiết