a) Cho x.y \(\in\)R, chứng minh: \(5x^2+x+5y^2\)>hoặc= \(\frac{11}{4}\left(x+y\right)^2\)
b) Cho các số x,y,z >0 thỏa mãn x+y+z=\(\sqrt{3}\)
Chứng minh rằng: \(\sqrt{5x^2+xy+5y^2}+\sqrt{5y^2+yz+5z^2}+\sqrt{5z^2+zx+5x^2}>4\sqrt{2}\)
Cho x,y,z>0 thỏa mãn \(\sqrt{x}+\sqrt{y}+\sqrt{z}=1\)\(1\).Tìm GTNN của:
\(A=\sqrt{\frac{x^2}{5x+32\sqrt{xy}+12y}}+\sqrt{\frac{y^2}{5y+32\sqrt{yz}+12z}}+\sqrt{\frac{z^2}{5z+32\sqrt{zx}+12x}}\)
Cho x,y,z > 0 .Tìm giá trị nhỏ nhất của \(P=\frac{\sqrt{5x^2+6xy+5y^2}}{x+y+2z}+\frac{\sqrt{5y^2+6yz+5z^2}}{y+z+2x}+\frac{\sqrt{5z^2+6zx+5x^2}}{z+x+2y}\)
Cho các số thực dương x,y,z thoả x+y+z=\(3\sqrt{2}\).Chứng minh rằng:
\(\frac{1}{\sqrt{x\left(3y+5z\right)}}+\frac{1}{\sqrt{y\left(3z+5x\right)}}+\frac{1}{\sqrt{z\left(3x+5y\right)}}\ge\frac{3}{4}\)
Cho x,y,z>0 thỏa mãn x+y+z=3.Chứng minh rằng:
\(\frac{x^2}{\sqrt{5x^2+2xy+y^2}}+\frac{y^2}{\sqrt{5y^2+2yz+z^2}}+\frac{z^2}{\sqrt{5z^2+2zx+x^2}}\ge\frac{3}{2\sqrt{2}}\)
Cho ba số không âm x,y,z thỏa mãn điều kiện x+y+z=1. Chưngs minh rằng
\(A=\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\le\sqrt{6}\)
Cho x,y,z là các số nguyên dương thỏa mãn \(\sqrt{x}+\sqrt{y}+\sqrt{z}=1\).Tìm min
\(\sqrt{\frac{xz}{5x+3\sqrt{xy}+12y}}+\sqrt{\frac{yz}{5y+32\sqrt{yz}+12z}}+\sqrt{\frac{zx}{5z+32\sqrt{xz}+12x}}\)
Cho \(x;y;z\ge2\)Tính GTNN của biểu thức
\(A=\frac{x}{\sqrt{y+z-4}}+\frac{y}{\sqrt{z+x-4}}+\frac{x}{\sqrt{x+y-4}}\)
Cho ba số x, y, z không âm. Chứng minh rằng \(x+y+z\ge-\sqrt{xy}-\sqrt{yz}-\sqrt{xz}\)