Violympic toán 8

DH

Cho ba số x,y,z khác 0 và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\).Tính giá trị của biểu thức \(P=\frac{2017}{3}xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)\)

NL
15 tháng 3 2019 lúc 5:53

\(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{1}{x^3}+\frac{1}{y^3}+\frac{3}{xy}\left(\frac{1}{x}+\frac{1}{y}\right)-\frac{3}{xy}\left(\frac{1}{x}+\frac{1}{y}\right)+z^3\)

\(=\left(\frac{1}{x}+\frac{1}{y}\right)^3+\frac{1}{z^3}-\frac{3}{xy}\left(\frac{-1}{z}\right)\) (do \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{-1}{z}\))

\(=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left[\left(\frac{1}{x}+\frac{1}{y}\right)^2-\left(\frac{1}{x}+\frac{1}{y}\right).\frac{1}{z}+\frac{1}{z^2}\right]+\frac{3}{xyz}\)

\(=\frac{3}{xyz}\)

\(\Rightarrow P=\frac{2017}{3}.xyz.\frac{3}{xyz}=2017\)

Bình luận (0)
H24
15 tháng 3 2019 lúc 14:50

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow\frac{1}{x}=-\left(\frac{1}{y}+\frac{1}{z}\right).P=\frac{2017}{3}xyz\left[-\left(\frac{1}{y}+\frac{1}{z}\right)^3+\frac{1}{y^3}+\frac{1}{z^3}\right]=-\frac{2017}{3}xyz\left(\frac{3}{yz^2}+\frac{3}{zy^2}\right)=-2017xyz\left(\frac{z+y}{z^2y^2}\right)=-2017\left(\frac{xyz^2+xy^2z}{y^2z^2}\right)=-2017\left(\frac{x}{y}+\frac{x}{z}\right)=-2017x\left(\frac{1}{y}+\frac{1}{z}\right)=-2017.\left(-\frac{1}{x}\right)x=2017\)

Bình luận (0)

Các câu hỏi tương tự
NS
Xem chi tiết
MK
Xem chi tiết
PM
Xem chi tiết
TA
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
BM
Xem chi tiết
MN
Xem chi tiết
NH
Xem chi tiết