Violympic toán 8

MK

1,cho ba số thưc x,y,z khác 0 và khác nhau thỏa mãn \(\frac{x^2}{yz}+\frac{y^2}{zx}+\frac{z^2}{xy}=3\)

Tính giá trị của biểu thức:\(P=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)

TP
29 tháng 1 2020 lúc 16:36

\(\frac{x^2}{yz}+\frac{y^2}{zx}+\frac{z^2}{xy}=3\Leftrightarrow x^3+y^3+z^3=3xyz\)

\(\Leftrightarrow x^3+y^3+z^3-3xyz=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)

\(x,y,z\) khác nhau nên \(x+y+z=0\)

\(P=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)

\(P=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}=\frac{\left(-x\right)\cdot\left(-y\right)\cdot\left(-z\right)}{xyz}=-1\)

Vậy...

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
MK
Xem chi tiết
TH
Xem chi tiết
TA
Xem chi tiết
MN
Xem chi tiết
MN
Xem chi tiết
NS
Xem chi tiết
H24
Xem chi tiết
MN
Xem chi tiết