Cho x,y,z là ba số thực dương thỏa x(x-z)+y(y-z)=0. Tìm GTNN của
\(P=\frac{x^3}{x^2+z^2}+\frac{y^3}{y^2+z^2}+\frac{x^2+y^2+4}{x+y}\)
cho các số thực x,y,z thỏa mãn 0<=x,y,z<=3
tìm gtnn của A= \(\sqrt{x^2+y^2-2xy}+\sqrt{Y^2-z\left(z-2y\right)}+\sqrt{x^2+z\left(z-2x\right)}\)
Cho x,y,z là ba số thực dương thỏa:x+y+z=3 .Tìm GTNN của biểu thức Q=x+1/1+y^2 +y+1/1+z^2 +z+1/1+x^2
Cho câc số thực dương x,y,z thỏa x+y+z=1 .tìm GTNN của:
P=\(\frac{x^3}{\left(2x+y\right)\left(y+z\right)}\)+\(\frac{y^3}{\left(2y+z\right)\left(z+x\right)}\)+\(\frac{z^3}{\left(2z+x\right)\left(x+y\right)}\)
cho x,y,z là số thực ,\(xyz=2\sqrt{2}\)
Tìm GTNN của \(P=\frac{x^8+y^8}{x^4+y^4+x^2y^2}+\frac{x^8+z^8}{x^4+z^4+x^2z^2}+\frac{y^8+z^8}{y^4+z^4+y^2z^2}\)
a, Cho ba số nguyên x,y,z thỏa mãn điều kiện x+y+z chia hết cho 6 . Chứng minh rằng giá trị của các biểu thức
M = (x+y)(y+z)(z+x) -2xyz cũng chia hết cho 6
b, Cho hai số thực x,y dương thỏa mãn:x+y >= 4
Tìm GTNN của biểu thức S=\(\frac{9x}{2}\)+2y +\(\frac{12}{x}\)+\(\frac{2}{y}\)
Cho x,y,z là các số thực dương thõa mãn x+y+z=3.Tìm GTNN của P=x4+2y4+3z4
Cho các số dương x;y;z thỏa mãn x +2y +3z 》 20
Tìm GTNN của biểu thức
A= x+y+z+3/z+9/2y+4/z
Cho x,y,z là ba số thực dương .Tìm giá trị nhỏ nhất của biểu thức :
\(S=\frac{\sqrt{x^2-xy+y^2}}{x+y+2z}+\frac{\sqrt{y^2-yz+z^2}}{y+z+2x}+\frac{\sqrt{z^2-zx+x^2}}{z+x+2y}\)