Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

VH

Cho ba số thực dương x;y;z thỏa mãn \(x^2+y^2+z^2=3\). Tìm giá trị nhỏ nhất của \(M=\frac{x^2+1}{x}+\frac{y^2+1}{y}+\frac{z^2+1}{z}-\frac{1}{x+y+z}\). Đây là bài 3b của đề thi HSG Toán 9 Huyện Tân Kỳ năm 2019-2020 . Ai giúp mình với , có đáp án cả đề càng tốt . Thanks nhìu

LC
28 tháng 10 2019 lúc 22:53

Anh ơi em nghĩ phải lả \(+\frac{1}{x+y+z}\)thì mới đúng ạ

Bình luận (0)
 Khách vãng lai đã xóa
LC
28 tháng 10 2019 lúc 23:01

sửa đề \(M=\frac{x^2+1}{x}+\frac{y^2+1}{y}+\frac{z^2+1}{z}+\frac{1}{x+y+z}\)

                                giải

Áp dụng bđt cô si cho 3 số dương \(x,y,z\)ta có:

\(\hept{\begin{cases}x^2+1\ge2\sqrt{x^2}=2x\\y^2+1\ge2\sqrt{y^2}=2y\\z^2+1\ge2\sqrt{z^2}=2z\end{cases}}\)

\(\Rightarrow\frac{x^2+1}{x}\ge2;\frac{y^2+1}{y}\ge2;\frac{z^2+1}{z}\ge2\)(1)

Áp dụng bđt bunhiacopxki ta có:

\(\left(x+y+z\right)^2\le\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow\left(x+y+z\right)^2\le3^2\)

Mà \(x,y,z\)nguyên dương

\(\Rightarrow x+y+z\le3\)

\(\Rightarrow\frac{1}{x+y+z}\ge\frac{1}{3}\left(2\right)\)

Lấy (1) + (2) ta được:

\(M\ge2+2+2+\frac{1}{3}\)

\(\Rightarrow M\ge\frac{19}{3}\)

Dấu"="xảy ra \(\Leftrightarrow x=y=z\)

Bình luận (0)
 Khách vãng lai đã xóa
ZZ
29 tháng 10 2019 lúc 0:05

Lê Tài Bảo Châu Đề bài ko sai.

\(M=\frac{x^2+1}{x}+\frac{y^2+1}{y}+\frac{z^2+1}{z}-\frac{1}{x+y+z}\)

Theo ĐL Cool Kid đz luôn có \(\frac{1}{a+b+c}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow M\ge x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{9}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\Rightarrow M\ge x+y+z+\frac{8}{9x}+\frac{8}{9y}+\frac{8}{9z}\)

Có BĐT :\(x+\frac{8}{9x}\ge\frac{x^2+33}{18}\Leftrightarrow.......\Leftrightarrow\left(x-1\right)^2\left(16-x\right)\ge0\left(true\right)\)

Tương tự cộng vế theo vế thì \(M\ge\frac{x^2+y^2+z^2+99}{18}=\frac{17}{3}\)

Dấu "=" xảy ra tại \(x=y=z=1\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
VH
Xem chi tiết
KK
Xem chi tiết
HH
Xem chi tiết
FS
Xem chi tiết
DT
Xem chi tiết
GF
Xem chi tiết
NT
Xem chi tiết
TP
Xem chi tiết
NT
Xem chi tiết