Gọi a, b, c là ba số thực khác 0 thay đổi và thỏa mãn điều kiện 3 a = 5 b = 15 - c . Tìm giá trị nhỏ nhất của biểu thức P = a 2 + b 2 + c 2 - 4 a + b + c
A. - 3 - log 5 3
B. -4
C. - 2 - 3
D. - 2 - log 5 3
Cho các số thực a;b;c;d thay đổi, luôn thỏa mãn a - 1 2 + b - 2 2 = 1 và 4 c - 3 d - 23 = 0 . Giá trị nhỏ nhất của biểu thức P : a - c 2 + b - d 2 là:
A. P m i n = 28
B. P m i n = 3
C. P m i n = 4
D. P m i n = 16
Cho a,b,c là các số thực dương thỏa mãn a log 5 2 = 4 , b log 4 6 = 1 , log , c log 7 3 = 49 Tính giá trị của biểu thức T = a log 2 2 5 + b log 4 2 6 + 3 c log 7 2 3
A. T=126
B. T = 5 + 2 3
C. T=88
D. T = 3 - 2 3
Cho a,b là các số thực dương thỏa mãn b>1 và a ≤ b < a . Giá trị nhỏ nhất của biểu thức P = log a b a + 2 log b a b bằng:
A. 6
B. 7
C. 5
D. 4
Cho a , b là hai số thực dương thỏa mãn log 5 4 a + 2 b + 5 a + b = a + 3 b - 4 . Tìm giá trị nhỏ nhất của biểu thức T = a 2 + b 2
A. 1 2
B. 1.
C. 3 2
D. 5 2
Cho a;b là hai số thực dương thỏa mãn log 5 4 a + 2 b + 5 a + b = a + 3 b − 4 . Tìm giá trị nhỏ nhất của biểu thức T = a 2 + b 2
A. 1/2
B. 5/2
C. 3/2
D. 1
Cho các số thực dương a,b,c thỏa mãn f a b + b c + c a + 3 + f 2 - 2 a 2 - 2 b 2 - 2 c 2 = 1 với hàm số f x = 4 x 4 x + 4 Giá trị lớn nhất của biểu thức P = a 2 + b 2 + c 2 - 1 a + b + c + 3 bằng
A. 17 6
B. 3
C. 13 6
D. 13 4
Cho hai số thực không âm x,y ≤ 1. Biết P = l n ( 1 + x 2 ) ( 1 + y 2 ) + 8 17 ( x + y ) 2 có giá trị nhỏ nhất là - a b + 2 ln c d trong đó a, b, c, d là số tự nhiên thỏa mãn ước chung của (a,b) = (c,d) = 1. Giá trị của a+b+c+d là
A. 406
B. 56
C. 39
D. 405
Cho các số thực dương a;b;c thỏa mãn a log 3 7 = 9 ; b log 7 11 = 49 ; c log 11 25 = 121 . Tính giá trị của biểu thức P = a log 3 7 2 + b log 7 11 2 + 5 log 11 c
A. P = 69
B. P = 179
C. P = 181
D. P = 291