PT

Cho ba số thực a;b;c thỏa mãn hệ sau: \(\hept{\begin{cases}a+b+c=4\\a^2+b^2+c^2=6\end{cases}}\)

Hãy giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = a3 + b2c + bc2.           

\(\hept{\begin{cases}a+b+c=4\\a^2+b^2+c^2=6\end{cases}}\)

\(b^2+c^2=6-a^2\Rightarrow\left(b+c\right)^2-2bc=6-a^2\)

\(\Rightarrow2bc=\frac{\left(b+c\right)^2-6+a^2}{2}\)

\(=\frac{\left(4-a\right)^2-6+a^2}{2}\left(Do:a+b+c=4\right)\)

\(=\frac{2a^2-8a+10}{2}=a^2-4a+5\)

\(\Rightarrow P=a^3+bc\left(b+c\right)=a^3+\left(a^2-4a+5\right)\left(4-a\right)\left(Do:a+b+c=4\right)\)

\(=a^3+4a^2-16a+20-a^3+4a^2-5a\)

\(=8a^2-21a+20\)

\(=8\left(a^2-2.\frac{21}{16}a+\frac{441}{256}\right)+\frac{199}{32}\)

\(=8\left(a-\frac{21}{16}\right)^2+\frac{119}{32}\)

 .............................................................

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
CL
Xem chi tiết
FN
Xem chi tiết
CV
Xem chi tiết
HV
Xem chi tiết
TS
Xem chi tiết
CV
Xem chi tiết
NN
Xem chi tiết
PN
Xem chi tiết
BY
Xem chi tiết