Cho a, b, c là các số dương thỏa mãn: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\). CMR: \(\dfrac{a^2}{a+bc}+\dfrac{b^2}{b+ca}+\dfrac{c^2}{c+ba}\le\dfrac{a+b+c}{4}\)
Cho ba số thực a,b,c sao cho \(1\le a\le2\),\(1\le b\le2\),\(1\le c\le2\)
Chứng minh \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{a}{c}+\dfrac{c}{b}+\dfrac{b}{a}\le7\)
cho \(\dfrac{1}{2}\le a,b,c\le2\). chứng minh: \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\ge\dfrac{22}{15}\)
Cho các số dương a, b, c thỏa mãn: a+b+c=1. CMR: \(4.\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+9\)
cho a,b,c dương thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\). tìm GTLN của \(P=\dfrac{1}{\sqrt{a^2-ab+b^2}}+\dfrac{1}{\sqrt{b^2-bc+c^2}}+\dfrac{1}{\sqrt{c^2-ca+a^2}}\)
cho a,b,c >0 thỏa mãn \(a^2+b^2+c^2=3\) chứng minh rằng \(\dfrac{a}{ab+3}+\dfrac{b}{bc+3}+\dfrac{c}{ca+3}\le\dfrac{3}{4}\)
Cho a, b, c là số thực dương thỏa mãn: a+b+c=1. Tìm GTLN của biểu thức: \(P=\sqrt{\dfrac{ab}{c+ab}}+\sqrt{\dfrac{bc}{a+bc}}+\sqrt{\dfrac{ac}{b+ac}}\)
Cho 3 số thực dương a, b, c thoả mãn \(a+b+c\le\sqrt{3}\). Chứng minh rằng: \(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{3}{2}\)
Cho a,b,c >0 thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=4\). Tìm GTLN của biểu thức
\(M=\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\)