TL

Cho ba số nguyên tố lớn hơn 3 thỏa mãn số sau lớn hơn số trước là k đơn vị . Chứng minh rằng k \(⋮\)6

OO
5 tháng 1 2017 lúc 8:37

mk gọi k là p nha

p là số nguyên tố > 3 => p lẻ

p + d là số nguyên tố => p + d lẻ mà p lẻ => d chẵn => d chia hết cho 2

+) Xét p = 3k + 1

Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + 2d = 3k + 1 + 2. (3m +1) = 3k + 6m + 3 chia hết cho 3 => không là số nguyên tố

Nếu d chia cho3 dư 2 => d = 3m + 2 => p +d = 3k + 1 + 3m + 2 = 3k + 3m + 3 => p + d không là số nguyên tố

=> d chia hết cho 3

+) Xét p = 3k + 2

Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + d = 3k + 2 + 3m + 1 = 3k + 3m + 3 => p + d không là số ngt

Nếu d chia cho 3 dư 2 => d = 3m + 2 => p + 2d = 3k + 6m + 6 => p + 2d không là số ngt

=> d chia hết cho 3

Vậy d chia hết cho cả 2 và 3 => d chia hết cho 6

Bình luận (0)
H24
5 tháng 1 2017 lúc 8:37

Đơn giản các số nguyên tố lớn hơn 3 có 3 dạng là 3k+1 và 3k+2

Có 3 số nguyên tố mà chỉ có 2 dạng nên tồn tại 2 số nguyên tố có cùng một dạng

Mà số nguyên tố lớn hơn 2 đều là số lẻ nên hiệu của nó sẽ là số chẵn

Vậy số đó chia hết cho 2

Mà 2 số có cùng một dạng trừ nhau sẽ chia hết cho 3

Vậy k vừa chia hết cho 2 và 3

mà (2;3) =1 nên k chia hết cho 6

Bình luận (0)
DL
4 tháng 1 2018 lúc 10:26

Mik thay k = d nha.Vì ở trường hay làm là d nên quen rồi

Bài giải :

p là số nguyên tố > 3 => p lẻ 

p + d là số nguyên tố => p + d lẻ mà p lẻ => d chẵn => d chia hết cho 2

+) Xét p = 3k + 1 

Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + 2d = 3k + 1 + 2. (3m +1) = 3k + 6m + 3 chia hết cho 3 => không là số nguyên tố

Nếu d chia cho3 dư 2 => d = 3m + 2 => p +d = 3k + 1 + 3m + 2 = 3k + 3m + 3 => p + d không là số nguyên tố

=> d chia hết cho 3

+) Xét p = 3k + 2

Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + d = 3k + 2 + 3m + 1 = 3k + 3m + 3 => p + d không là số ngt

Nếu d chia cho 3 dư 2 => d = 3m + 2 => p + 2d =  3k + 6m + 6 => p + 2d không là số ngt

=> d chia hết cho 3

Vậy d chia hết cho cả 2 và 3 => d chia hết cho 6

   
Bình luận (0)