MD

Cho ba số nguyên dương x,y,z thỏa mãn:\(\frac{1}{\sqrt{2x-3}}+\frac{4}{\sqrt{y-z}}+\frac{16}{\sqrt{3z-1}}+\sqrt{2x-3}+\sqrt{y-2}+\sqrt{3z-1}=14\)

Tìm x,y,z

HN
13 tháng 7 2016 lúc 10:14

Đặt \(a=\sqrt{2x-3}\) ; \(b=\sqrt{y-2}\) ; \(c=\sqrt{3z-1}\) (\(a,b,c>0\))

Ta có : \(\frac{1}{a}+\frac{4}{b}+\frac{16}{c}+a+b+c=14\)

\(\Leftrightarrow\left(\sqrt{2x-3}+\frac{1}{\sqrt{2x-3}}-2\right)+\left(\sqrt{y-2}+\frac{4}{\sqrt{y-2}}-4\right)+\left(\sqrt{3z-1}+\frac{16}{\sqrt{3z-1}}-8\right)=0\)

\(\Leftrightarrow\left[\frac{\left(2x-3\right)-2\sqrt{2x-3}+1}{\sqrt{2x-3}}\right]+\left[\frac{\left(y-2\right)-4\sqrt{y-2}+4}{\sqrt{y-2}}\right]+\left[\frac{\left(3z-1\right)-8\sqrt{3z-1}+16}{\sqrt{3z-1}}\right]=0\)

\(\Leftrightarrow\frac{\left(\sqrt{2x-3}-1\right)^2}{\sqrt{2x-3}}+\frac{\left(\sqrt{y-2}-2\right)^2}{\sqrt{y-2}}+\frac{\left(\sqrt{3z-1}-4\right)^2}{\sqrt{3z-1}}=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2x-3}-1\right)^2=0\\\left(\sqrt{y-2}-2\right)^2=0\\\left(\sqrt{3z-1}-4\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=\frac{17}{3}\end{cases}}}\)(TMĐK)

Vậy : \(\left(x;y;z\right)=\left(2;6;\frac{17}{3}\right)\)

Bình luận (0)
HN
13 tháng 7 2016 lúc 10:26

Phần đặt ẩn a,b,c bạn bỏ đi nhé ^^

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
NA
Xem chi tiết
MN
Xem chi tiết
MN
Xem chi tiết
MP
Xem chi tiết
LT
Xem chi tiết
CN
Xem chi tiết
MN
Xem chi tiết
HD
Xem chi tiết