NL

Cho ba số khác từng đôi một và khác 0 thỏa mãn a/b+c=b/a+c=c/a+b

Chứng minh 

b+c/a+a+c/b+a+b/c

Không phụ thuộc vào các giá trị a,b,c

 

SG
23 tháng 10 2016 lúc 10:01

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}=\frac{a+b+c}{2.\left(a+b+c\right)}\)

Xét 2 trường hợp:

TH1: a + b + c = 0 thì \(\hept{\begin{cases}b+c=-a\\a+c=-b\\a+b=-c\end{cases}}\)

Có: \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{-a}{a}+\frac{-b}{b}+\frac{-c}{c}=-1+\left(-1\right)+\left(-1\right)=-3\), không phụ thuộc vào các giá trị a;b;c (1)

TH2: a + b + c \(\ne\) 0 thì \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2.\left(a+b+c\right)}=\frac{1}{2}\)

\(\Rightarrow\hept{\begin{cases}2a=b+c\\2b=a+c\\2c=a+b\end{cases}}\)

Có: \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}=2+2+2=6\), không phụ thuộc vào các giá trị a;b;c (2)

Từ (1) và (2) => đpcm

Bình luận (0)
Ad
8 tháng 10 2018 lúc 17:07

Vì \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)

Suy ra \(\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}=\frac{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}{a+b+c}=2\)

\(\Rightarrow b+c=2a;a+c=2b;a+b=2c\)

Bằng cách rút \(b\) từ đẳng thức thứ nhất thay vào đẳng thức thứ hai ta đễ dàng suy ra được \(a=b=c\)

\(\Rightarrow\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=2+2+2=6\)

Bình luận (0)

Các câu hỏi tương tự
TH
Xem chi tiết
HN
Xem chi tiết
PA
Xem chi tiết
NN
Xem chi tiết
NT
Xem chi tiết
NM
Xem chi tiết
KA
Xem chi tiết
PD
Xem chi tiết
PM
Xem chi tiết