Ta có : \(a+b+c=1\)
\(\Rightarrow\left(a+b+c\right)^2=1\)
Do \(\left(a+b+c\right)^2\ge4\left(a+b\right).c\) ( áp dụng BĐT Cô - si )
\(\Rightarrow1\ge4\left(a+b\right)c\)
\(A=\dfrac{a+b}{abc}=\dfrac{\left(a+b\right).1}{abc}\ge\dfrac{\left(a+b\right).4\left(a+b\right)c}{abc}=\dfrac{4\left(a+b\right)^2.c}{abc}\ge\dfrac{4.4ab.c}{abc}=16\)
Dấu " = " xảy ra \(\Leftrightarrow a+b=c;a=b;a+b+c=1\)
\(\Leftrightarrow a=b=\dfrac{1}{4};c=\dfrac{1}{2}\)
Vậy ...