Ôn tập chương II

NN

Cho ba số a,b,c là số dương thỏa mãn:

\(\dfrac{2016c-a-b}{c}=\dfrac{2016b-a-c}{b}=\dfrac{2016a-b-c}{a}\)

Tính A= (\(1+\dfrac{a}{b})(1+\dfrac{b}{c})(1+\dfrac{c}{a})\)

MP
19 tháng 12 2017 lúc 11:10

áp dụng tính chất dảy tỉ số bằng nhau ta có :

\(\dfrac{2016c-a-b+2016b-a-c+2016a-b-c}{c+b+a}\)

\(=\dfrac{2014c+2014b+2014a}{c+b+a}=\dfrac{2014\left(c+a+b\right)}{c+a+b}=2014\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{2016c-a-b}{c}=2014\\\dfrac{2016b-a-c}{b}=2014\\\dfrac{2016a-b-c}{a}=2014\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2016c-a-b=2014c\\2016b-a-c=2014b\\2016a-b-c=2014a\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2016c-a-b-2014c=0\\2016b-a-c-2014b=0\\2016a-b-c-2014a=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2c-a-b=0\\2b-a-c=0\\2a-b-c=0\end{matrix}\right.\)

bấm máy tính ta có phương trình vô nghiệm nên A không xát định

Bình luận (20)
MS
19 tháng 12 2017 lúc 11:34

\(L=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)

Với \(a+b+c=0\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\c+a=-b\end{matrix}\right.\)

Khi đó \(L=\dfrac{-abc}{abc}=-1\)

Với \(a+b+c\ne0\) áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{2016c-a-b}{c}=\dfrac{2016b-a-c}{b}=\dfrac{2016a-b-c}{a}=\dfrac{2016c-a-b+2016b-a-c+2016c-b-c}{a+b+c}=\dfrac{\left(2016c-c-c\right)+\left(2016b-b-b\right)+\left(2016c-c-c\right)}{a+b+c}=\dfrac{2014\left(a+b+c\right)}{a+b+c}=2014\)\(\Rightarrow\left\{{}\begin{matrix}2016c-a-b=2014c\\2016b-a-c=2014b\\2016a-b-c=2014a\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2016c-a-b-2014c=0\\2016b-a-c=2014b=0\\2016a-b-c-2014a=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2c-a-b=0\\2b-a-c=0\\2a-b-c=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a+b=2c\\a+c=2b\\b+c=2a\end{matrix}\right.\)

Khi đó \(L=\dfrac{8abc}{abc}=8\)

Bình luận (0)

Các câu hỏi tương tự
KR
Xem chi tiết
NQ
Xem chi tiết
NS
Xem chi tiết
VH
Xem chi tiết
NS
Xem chi tiết
KC
Xem chi tiết
HD
Xem chi tiết
PD
Xem chi tiết
BC
Xem chi tiết