Ôn tập chương II

KC

cho biểu thức A=\([\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}.\dfrac{2}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{x}+\dfrac{1}{y}]:\dfrac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)

a)Tìm điều kiện xác định

b)Rút gọn A

c)Biết xy=16 tìm các giá trị của x,y để A có giá trị nhỏ nhất, tìm giá trị đó.

NT
30 tháng 11 2022 lúc 8:07

a: ĐKXĐ: x>0; y>0

b: \(A=\left[\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)\cdot\dfrac{2}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{x}+\dfrac{1}{y}\right]:\dfrac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)

\(=\left(\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\cdot\dfrac{2}{\sqrt{x}+\sqrt{y}}+\dfrac{x+y}{xy}\right)\cdot\dfrac{\sqrt{xy}\left(x+y\right)}{x\sqrt{x}+y\sqrt{x}+x\sqrt{y}+y\sqrt{y}}\)

\(=\left(\dfrac{2}{\sqrt{xy}}+\dfrac{x+y}{xy}\right)\cdot\dfrac{\sqrt{xy}\left(x+y\right)}{\left(x+y\right)\left(\sqrt{x}+\sqrt{y}\right)}\)

\(=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{xy}\cdot\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}=\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\)

 

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
NA
Xem chi tiết
SK
Xem chi tiết
H24
Xem chi tiết
ST
Xem chi tiết
NA
Xem chi tiết
NP
Xem chi tiết
NA
Xem chi tiết
TN
Xem chi tiết