PB

Cho ba điểm A(1; 2; 1), B(2; -1; 1), C(0; 3; 1) và đường thẳng d:  x - 3 = y - 1 = z 2

Tìm tập hợp những điểm cách đều ba điểm A, B, C.

CT
16 tháng 8 2019 lúc 15:57

Gọi (Q) và (R) theo thứ tự là mặt phẳng trung trực của AB và BC.

Những điểm cách đều ba điểm A, B, C là giao tuyến ∆ = (Q) ∩ (R).

(Q) đi qua trung điểm E(3/2; 1/2; 1) của AB và có  n Q →  = AB (1; -3; 0) do đó phương trình của (Q) là: x - 3/2 - 3(y - 1/2) = 0 hay x - 3y = 0

(R) đi qua trung điểm F(1; 1; 1) của BC và có  n R →  =  BC →  = (-2; 4; 0) do đó phương trình (R) là: x - 2y + 1 = 0

Ta có:  n Q →   ∧   n R →  = (0; 0; -2).

Lấy D(-3; -1; 0) thuộc (Q)  ∩  (R)

Suy ra ∆ là đường thẳng đi qua D và có vectơ chỉ phương  u → (0; 0; 1)

nên có phương trình là: Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
WK
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết