Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho a,b,c thuộc R và a,b,c khác 0 thỏa mãn b^2=ac. chứng minh rằng a/c=(a+2012b)^2/(b+2012c)^2
Choa,b,c thuộc Q(a,b,c#0) thỏa mãn b^2=ac. Chứng minh a/c=(a+2012b)^2/(b+2012c)^2
2.Cho a/c=c/b Chứng minh a2 +c2/b2+c2=a/b
Cho a,b,c khác 0 và b2=ac
Cm:a/c=(a+2012b)2/(b+2012c)2
cho a,b,c thuộc R và a,b,c khác 0 ,chứng minh \(\frac{a}{b}\) = \(\frac{\left(a+2012b\right)^2}{\left(b+2012c\right)^2}\)
BÀI 1:Cho a,b,c thuộc R và a,b,c khác 0 thỏa mãn b2=ac.
Chứng minh rằng: \(\frac{a}{c}\)= \(\frac{\left(a+2012b\right)^2}{\left(b+2012c\right)^2}\)
BÀI 2: Chứng minh rằng :
\(\frac{x}{a+2b+c}\)=\(\frac{y}{2a+b-c}\)=\(\frac{z}{4a-4b+c}\)
thì \(\frac{a}{x+2y+z}\)=\(\frac{b}{2x+y-z}\)=\(\frac{c}{4x-4y+z}\)
Cho a,b,c \(\varepsilonℝ\)và a,b,c \(\ne0\).Thỏa mãn \(b^2=ac\)CMR
\(\frac{a}{c}=\frac{\left(a+2012b\right)^2}{\left(b+2012c\right)^2}\)
Cho a,b,c\(\in\)R và a,b,c \(\ne\)0 thoả mãn b2 = ac. Chứng minh rằng:
\(\frac{a}{c}=\frac{\left(a+2012b\right)^2}{\left(b+2012c\right)^2}\)
a, Cho a/b = c/d . CMR : a+b/2b = c+d/2d
b, Cho a/c = c/b . CMR : a^2+c^2 / b^2+c^2 = a/b
c, Cho b^2 = ac ( a , b , c # 0 ) . CMR :
a/c = ( a + 2012b )^2 / ( c + 2012c )^2
d, Cho a/b = c/d . CMR :
5a + 3b / 5a - 3b = 5c + 3d / 5c - 3d
MỌI NGƯỜI LM ĐC CÂU NÀO THÌ LM NHA !