\(\frac{B}{2}=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}\)
\(\frac{B}{2}=B-\frac{B}{2}=\frac{1}{2}-\frac{1}{2^{100}}< 1\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
\(\frac{B}{2}=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}\)
\(\frac{B}{2}=B-\frac{B}{2}=\frac{1}{2}-\frac{1}{2^{100}}< 1\)
chứng minh rằng :
1/2!.3! + 2/1!.2!.3! + ... + 99/98!.99!.100! < 1
a) thu gọn biểu thức sau: a= 5 - 5^2 + 5^3 - 5^4 +...- 5^98 + %^99
b) chứng minh rằng với mọi n thuộc N thì (2^n+1).(2^n+2) đều chia hết cho 3
c) chúng minh: A= 1/1^2 + 1/2^2+ 1/3^2+.....+1/99^2+ 1/100^2 < 1 3/4 (hỗn số)
chứng minh rằng :
1/ 1! . 2! + 2/ 1! . 2! . 3! + ... + 99/ 98! . 99! . 100! <1
ChoN=1/2+(1/2)^2+(1/2)^3+(1/2)^4+......+(1/2)^98+(1/2)^99. Chứng minh B<1
B= 1/3 + 1/3^2 +...+ 1/3^98 + 1/3^99
Chứng minh B<1/2
hứng minh rằng B<1 với:
A= 1/2+(1/2)^2+(1/2)^3+(1/2)^4+.......+ (1/2)^98+(1/2)^99
Chứng minh rằng : A=1×98+2×97+3×96+. . . . .+96×3+97×2+98×1/1×2+2×3+3×4+. . . . .+96×97+97×98+98×99=1/2
Ai giải ra nhanh và sớm nhất mk sẽ tk cho 5 tk lun
Thank you very good!
1) Cho đa thức M(x) = ax2 +bx+c bằng 0 với mọi giá trị của x. Chứng minh rằng a=b=c
2) Chứng minh: \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}<\frac{1}{2}\)
3) Rút gọn biểu thức sau: M= 2100 - 299 + 298 - 297 + ... + 22 -2
Cho B=\(\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+....+\left(\frac{1}{2}\right)^{98}+\left(\frac{1}{2}\right)^{99}\)
Chứng minh B<1