DL

cho b la mot so tu nhien khong chia het cho 3 . chung to rang b^2 -1 chia het cho 3

NM
24 tháng 11 2017 lúc 19:34

b không chia hết cho 3 nên ta xét 2 trường hợp:

TH1: b chia 3 dư 1 nên b = 3k + 1

\(\Rightarrow\left(3k+1\right)^2-1=9k^2+6k+1-1=3k\left(3k+3\right)\)

Vì \(3⋮3\)

Do đó \(3k\left(3k+2\right)⋮3\Rightarrow\left(3k+1\right)^2-1⋮3\)

TH2: b chia 3 dư 2 nên b = 3k + 2

\(\Rightarrow\left(3k+2\right)^2-1=9k^2+12k+4-1=3k\left(3k+4\right)\)

vì \(3⋮3\)

Do đó \(3k\left(3k+4\right)⋮3\Rightarrow\left(3k+2\right)^2-1⋮3\)

Vậy với b là một số tự nhiên không chia hết cho 3 thì \(b^2-1⋮3\)

Bình luận (0)
TT
24 tháng 11 2017 lúc 19:30

b là số tự nhiên không chia hết cho 3 => b có dạng 3k+1 hoặc 3k+2 (k thuộc N*)

Th1: b=3k+1=> b^2-1=9.k^2+6k+1-1=9.k^2+6k chia hết cho 3

Th2: b=3k+2 => b^2-1=9.k^2+12k+4-1=9.k^2+12k+3 chia hết cho 3

Vậy với mọi b là số tự nhiên không chia hết cho 3 thì b^2-1 chia hết cho 3

Bình luận (0)
PD
12 tháng 12 2017 lúc 22:53

b là số tự nhiên không chia hết cho 3 => b có dạng 3k+1 hoặc 3k+2 (k thuộc N*)

Th1: b=3k+1=> b^2-1=9.k^2+6k+1-1=9.k^2+6k chia hết cho 3

Th2: b=3k+2 => b^2-1=9.k^2+12k+4-1=9.k^2+12k+3 chia hết cho 3

Vậy với mọi b là số tự nhiên không chia hết cho 3 thì b^2-1 chia hết cho 3

Bình luận (0)
DL
15 tháng 12 2017 lúc 20:15

các bạn làm tắt quá

Bình luận (0)

Các câu hỏi tương tự
EL
Xem chi tiết
HO
Xem chi tiết
KM
Xem chi tiết
TA
Xem chi tiết
H24
Xem chi tiết
EL
Xem chi tiết
NT
Xem chi tiết
MT
Xem chi tiết
TQ
Xem chi tiết