\(B=\frac{2013-1}{2013}+\frac{2014-1}{2014}+\frac{2012+3}{2012}\)
\(B=1-\frac{1}{2013}+1-\frac{1}{2014}+1+\frac{3}{2012}=3+\frac{3}{2012}-\left(\frac{1}{2013}+\frac{1}{2014}\right)\)
Ta có
\(\frac{1}{2013}< \frac{1}{2012};\frac{1}{2014}< \frac{1}{2012}\Rightarrow\frac{1}{2013}+\frac{1}{2014}< \frac{2}{2012}\)
Mà \(\frac{3}{2012}-\frac{2}{2012}=\frac{1}{2012}>0\Rightarrow\frac{3}{2012}-\left(\frac{1}{2013}+\frac{1}{2014}\right)>0\)
=> B>3